ON PSEUDO SEMICONFORMALLY SYMMETRIC MANIFOLDS
نویسندگان
چکیده
منابع مشابه
On Partially Pseudo Symmetric K-contact Riemannian Manifolds
A Riemannian manifold (M, g) is semi-symmetric if (R(X,Y ) ◦ R)(U, V,W ) = 0. It is called pseudo-symmetric if R ◦ R = F, F being a given function of X, . . . ,W and g. It is called partially pseudosymmetric if this last relation is fulfilled by not all values of X, . . . ,W . Such manifolds were investigated by several mathematicians: I.Z. Szabó, S. Tanno, K. Nomizu, R. Deszcz and others. In t...
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملOn pseudo cyclic Ricci symmetric manifolds admitting semi-symmetric metric connection
The object of the present paper is to investigate the applications of pseudo cyclic Ricci symmetric manifolds admitting a semi-symmetric metric connection to the general relativity and cosmology.
متن کاملOn symmetric Cauchy-Riemann manifolds
The Riemannian symmetric spaces play an important role in different branches of mathematics. By definition, a (connected) Riemannian manifold M is called symmetric if, to every a ∈ M , there exists an involutory isometric diffeomorphism sa:M → M having a as isolated fixed point in M (or equivalently, if the differential dasa is the negative identity on the the tangent space Ta = TaM of M at a)....
متن کاملOn Weakly Projective Symmetric Manifolds
The object of the present paper is to study weakly projective symmetric manifolds and its decomposability with several non-trivial examples. Among others it is shown that in a decomposable weakly projective symmetric manifold both the decompositions are weakly Ricci symmetric.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2017
ISSN: 1015-8634
DOI: 10.4134/bkms.b151007